Using Events to Build Distributed Applications

Jean Bacon, John Bates, Richard Hayton and Ken Moody
University of Cambridge Computer Laboratory
Pembroke Street, Cambridge CB2 3QG, United Kingdom

Abstract

We have extended an Interface Definition Lan-
guage to handle event registration and notification.
Clients register interest in specified classes of events
and servers then notify them of any occurrence asyn-
chronously. Event occurrences are identified by pa-
rameters which conform to IDL typing constraints and
can therefore be used in synchronous method invoca-
tions. Methods to handle registration and notification
are generic and can be inherited by objects of any class:
as a by-product of IDL processing the stubs to han-
dle event creation and decoding are generated automat-
tcally. We have implemented a prototype composite
event recogniser based on non-deterministic finite state
machines. Initial experience with this prototype is en-
couTaging.

1 Introduction

The term “event” is used in many spheres of com-
puting to capture the notion of an autonomous asyn-
chronous occurrence. Here, we are concerned with
events within an object-orientated distributed pro-
gramming (OODP) environment and have designed a
unified framework for programming with objects and
events.

Current OODP technology is based on objects with
typed interfaces together with support for providers
to make them available, and for users to locate and
invoke them [7, 1]. This object-orientated paradigm
is well established but does not capture fully the dy-
namic, event-driven behaviour of many systems. Some
“active” objects monitor continuously for specific oc-
currences and may then notify interested clients asyn-
chronously. We believe that applications will, increas-
ingly, need to request and receive notification of asyn-
chronous occurrences (events) as well as carrying out
synchronous service invocation.

1.1 Current Event Handling Approaches

Handling an asynchronous interrupt in order to
avoid polling is familiar from the hardware-system in-
terface. Exception handling at the programming lan-
guage level comprises client-supplied routines being in-
voked in response to server-detected events.

In an OODP framework the usual approach to han-
dling asynchronous messages from an active service is
the “callback” mechanism. The client must provide a
callback interface for each service which can then be
invoked by the server. This approach is ad hoc: the
client has to declare itself as a service because there is
no mechanism for declaring and handling events.

Because different systems use different callback
mechanisms a lot of potential for reuse of services is
lost. Also, applications are complicated by includ-
ing different libraries for different services. A uni-
form mechanism for specifying interest in events and
being notified of their occurrence provides a powerful
paradigm for building “active applications”.

1.2 Emerging Classes of Service

The list below introduces some types of service which
are emerging in distributed environments along with
the applications which access them:

o Multimedia Services: Applications such as Hyper-
media can require access to components from different
services, e.g. those supporting video, audio, text or pic-
tures. User interaction with one distributed medium
component can cause an application to initiate actions
on another. For example, clicking on a marked area of
a video presentation may cause it to be halted and an
audio commentary output.

e Cooperative Systems: Cooperative applications
support collaboration between a number of users. Oc-
currences in one application instance must be reflected
in others.

e Services involving Mobility: e.g. services which
utilise the ‘Active Badge’ system. FEach user is pro-
vided with a mobile badge device which periodically
transmits a unique infra-red signal. Distributed detec-
tors report people’s locations to monitoring services.
Applications must be able to request and receive infor-
mation such as when people’s locations change.

e Agent Architectures: Agents are services which ap-
ply “intelligence heuristics” to reporting on their mon-
itoring activities. An example is reporting that mail
has arrived only if it is from someone interesting. We
envisage agents which apply heuristics to notifications
from a range of services.

www.manaraa.com

e Active Database Systems: i.e. a standard DBMS
augmented with facilities to monitor for certain se-
quences of database activity. Uses of such monitor-
ing include security checks and constraint enforcement.
Standard object invocations by some clients trigger
events of interest to others.

All of these service types are ‘active’ and ‘continu-
ous’. They not only carry out user requests but also
monitor concurrently for certain events. Several exist
for the specific purpose of monitoring. Applications
which use these systems must be informed of event oc-
currences which they can use to initiate further actions.

The activities of different classes of service can often
be combined. For example, a video conference might
be started at the workstation nearest to a person’s cur-
rent location only if software agents decide that the
person is not too busy to deal with it. An architecture
is required in which basic services carry out standard
event-related functions allowing additional functional-
ity, such as event composition, to be provided by higher
level services.

1.3 Our Event Approach

The use of objects has become an accepted basis
for distributed programming. Strongly typed interfaces
enhance ease of programming, correctness, reusability
and portability. However, new applications are expos-
ing the need to extend the paradigm to accommodate
dynamic, asynchronous behaviour. Our integration of
events into the object framework addresses this short-
coming.

We believe that many applications are developed
‘from scratch’ because appropriate monitoring facilities
are not provided by existing services. To redress this
we propose a standard extension to services to incorpo-
rate event specification (by services), registration
(by clients at services) and notification (by services
to clients).

Some applications will require notification of events
from multiple services and will need to detect specific
patterns of composite event occurrence from these dif-
ferent sources. If services are built to conform to our
proposed standards, their clients can compose events
into expressions. Since composite event detection is
needed in many applications we have built a compos-
ite event service to meet this requirement.

1.4 Structure of this Paper

In section 2 we describe our model for typed events,
registration and notification. Examples of events which
services might notify are specified using an Interface
Definition Language (IDL) extended for events. We
show how a client registers an interest in certain events
at a server, and we describe facilities to help clients and
services to manage event occurrences. We also describe

prototype services we have built using our extended
IDL.

In section 3 we illustrate ‘composite events’: a mech-
anism for specifying composite monitoring scenarios us-
ing primitive events as building blocks. We discuss a
prototype composite event service we have developed.

In section 4 we describe prototype applications we
have built to explore our ideas. Experimental work is
still in progress and in section 5 we discuss our early
findings.

2 Event Services

The event approach aims to augment rather than
replace current distributed programming methods. We
have therefore extended an existing Interface Definition
Language (IDL) to handle events. This enables a server
to declare, in a strongly-typed way, the events it can
notify. It also allows a client to see the server’s specifi-
cation of events and to select those of interest. In this
section, event examples will be given in the extended
IDL. We have also developed plug-in server and client
modules to provide generic event operations, such as
registration and notification. In this section, we first
describe our event model and then discuss aspects of
our prototype implementation.

2.1 Event Classification

In our model an event instance is an object. To
declare an event requires a class and the sequence of
typed parameters that instantiates a particular event
object. An example of an event declaration is

Badge : INTERFACE =
Seen: EVENTCLASS [badge :
sensor

BadgelId;
: Sensorld 1;
END.

This is taken from the interface Badge, declared as
part of an active badge service. The service monitors
the locations of badge wearers by receiving the latest
information from badge sensors. Since an event is de-
clared in an interface description, each of the param-
eters of the event can be of any type which can be
constructed in the IDL. This enables events to share
types with interface methods, which is essential when
using event parameters in further calls to the service.

Event instances are objects. Event clients and ser-
vices exchange these event objects. Each event class has
its own creation routine, for which parameters must be
provided. For example, the badge service can create
a Seen event object to send to interested clients. An
event representing badge 13 being detected by sensor
23 can be created in the following way:

e = Badge_Seen(13,23);

www.manaraa.com

All event classes are derived from the super-class Event.
As illustrated below, this allows generic operations to
be provided in client and service modules.

Badge
Service S

Event Server Module

List of Registered
Events

Event
Instances

\Regi stration

Event Client Module
Regi st er Badge
DeRegi st er Cllent

Event
Templates

Invocation of Client-Specified Methods

Figure 1: Registration and Notification

2.2 Registration and Notification

This section describes event interactions between
event clients and services, illustrated in figure 1.

A service has the ability to signal detected occur-
rences as event instances. Clients will only be told of
the occurrence of events (notified) if they have regis-
tered an interest in these events (see below). Taking
the badge service as an example, it is constantly receiv-
ing information on the location of individuals, which it
can signal as events. It can create an appropriate event
object (as in e above) and signal it in the following way:

EventServer.Signal (e);

The Signal method is a generic operation which is pro-
vided by the event service module (see below).

In order to be notified of the occurrence of events, a
client must register interest with the relevant service.
An event template is given to specify the parameters
denoting the events of interest. A template is an event
object which can be instantiated with parameters of a
valid type, and variables. If specific parameter values
are given, then an occurrence will be notified only if
it matches in these parameters. A variable, given in
place of some parameter, indicates a ‘wild card’ which
can match any value in signalled events. Examples of
event template object instantiations are

when = Seen(13,47)
— notify whenever badge 13 is seen at sensor 47.
who = Seen(P,23)
notify every time a badge is seen at sensor 23.

When a client has created an event template, it must
register it with the relevant service. To do this, it must
use the generic event client method Register. The

following example shows the registration of interest in
any badge event about anyone seen in any room:

template = Badge_Seen(P,R);
EventClient.Register(env,EventHandler,template) ;

The EventHandler field in the Register method indi-
cates a client method which is to be invoked when an
event matching the template (parameter template) is
notified. The env parameter is returned as a parameter
to this method, along with the event instance which has
been signalled. A header for an event handling method,
which must be specified by the client, is expressed in
the following way:

void EventHandler(Opaque *env, Event *event)

The env field is used for client-specific purposes. Its
typical use is as a pointer to a client-defined structure
that provides extra information when an event is noti-
fied. The event object parameter can be queried, via
its methods, to decode its instance specific parameters.
This can be done in the following way:

event.Decode() -> {Instance-Parameters}

Since event parameters are defined using the same IDL
as service methods, the extracted parameters can be
used directly when invoking further interface methods.

If a client no longer requires notification of a par-
ticular event template, then it is possible to deregister
interest,.

Badge = | NTERFACE
Seen : EVENTCLASS [badge: Badgel d; Stub

ssensor: Sensorld] || Generator

,///\»

Badge_Seen(badge: Badgel d, Badge_Seen_Decode(e: Event) - >
sensor: Sensorld) -> (badge: Badgel d,
(e: Event) sensor : Sensor | d)

{..} {1

END.

Figure 2: Examples of automatic stub generation

2.3 Event Timestamps

Event objects also have a timestamp attribute. The
event service module sets this attribute when events
are signalled. Despite the problems of distributed time,
this can be useful in various application-specific circum-
stances. We discuss it with reference to event compo-
sition in section 3.

2.4 Implementation Concerns

In order to support this model of registration and
notification in distributed programs we have had to ex-
tend current OODP models in the following two ways.

www.manaraa.com

2.4.1 Automatic Stub Generation

The first is the IDL extension to support events. The
IDL we selected is that of MSRPC II [8], a locally devel-
oped high-performance RPC system. MSRPC II’s IDL
is an extended version of the ANSA model [1]. The
benefit of extending an IDL for events is not just the
uniform programming environment, but also the po-
tential for automatic generation of code. In the same
way that client and server stubs are generated for the
marshalling and unmarshalling of method invocations,
the event interface can be used as a specification for
a stub generator that automatically creates the event-
specific stubs required by event objects. These stubs in-
clude the code required to create event object instances
and templates and event-specific methods, such as the
Decode method to access the event instance parame-
ters.

As an example, from the Badge interface specified
above, the stubs to create and decode event and tem-
plate instances can be generated (see figure 2).

2.4.2 Client and Server Event Modules

The second extension is the client and server ‘plug-
in modules’ to provide an interface to support generic
event operations (such as registration and signalling).
Because all event classes are derived from the superclass
Event, client and server modules can deal with events
generically. The stub routines are responsible for in-
stantiating event objects and for accessing their inter-
nal state, simplifying the job of the client and server
modules.

The server event module manages the functions of
registration and notification transparently to the ser-
vice. It provides registration interfaces for events.
Event templates are stored by the module, and when-
ever an event is signalled by the server code it checks
the event against all templates. Any that match are
notified to the appropriate client.

The client module provides facilities for handling no-
tifications from a server. It provides a notification inter-
face, a reference to which is specified when registering
events with the service. This enables the service to call
the client when its templates are matched.

To facilitate the access to registration interfaces re-
quires a binding agent, such as the trader in the ANSA
(and MSRPC II) model. In our implementation an
event service’s registration interfaces are optionally ex-
ported to the trader by the event service module. When
a registration call is made to the client module it at-
tempts to import an interface of the appropriate type
from the trader.

2.5 Prototype Objects and Services

We have developed a number of event services to
provide an application development testbed.

e The badge service keeps track of the locations of
individuals wearing active badges. It is possible to reg-
ister interest in individuals and sensors.

eThe phone service manages a phone device.
This is connected to an audio service to allow
digitised speech to be sent down the phone line.
Event classes which can be registered with this
service include {LineFree, LineBusy, PhoneRing,
StoppedRinging, KeyPress}. The KeyPress event
type is used to detect whether someone on the other
end of the phone has pressed one of the phone keys.

e The login service monitors for logging into and out
of machines. It can also be used to locate people who
do not have active badges by seeing whether they are
using X displays located within the building. Example
event classes from this service are {Login, Logout,
ActiveDisplay, InActiveDisplay}.

e The database name service illustrates how event fa-
cilities can assist the construction of an active database.
This service complements the active badge service by
providing mappings such as that from a badge id to
a user’s name and from a sensor id to a room name.
It also stores the locations of items, e.g. which room
holds a particular display. Our service allows Lookup
to be performed using an event template. It also al-
lows clients to register interest in database items and
then to be notified on update. For example, we might
have looked up Ken’s badge id in order to present it
to a badge service to monitor his location. If sometime
later Ken gets a new badge then the database can tell
us that an update has occurred so that we can amend
our monitoring.

e Interconmectable multimedia objects have been de-
veloped, each of which has registration and notification
capabilities [2]. These include text, picture, video and
audio objects for device access and filtering. We will
discuss how these objects can be used in more complex
systems such as cooperative applications in section 4.
Another type of object which is described further be-
low is the Whiteboard object. This provides a user with
a graphical drawing board. Any interaction using the
mouse pointer as a pen results in a line being drawn.
Each line drawn also generates an event and it is pos-
sible to register interest in these events. Such simple
components provide building blocks for more complex
applications.

o The time service will register a request for an event
to be notified to a client at a specified time. This service
is used in composite events (see section 3) to enable
time offsets to be included in monitoring scenarios.

www.manaraa.com

3 Composite Events

Often, activity within applications is triggered not
just by a single event but by a complex pattern of
events. Such composite detection can involve param-
eter checking of event occurrences, state lookup and
monitoring for particular event orderings.

Some examples of composite event scenarios are!:

e Monitoring for everyone who leaves the building
after a fire alarm goes off

e Monitoring for everyone who is still in the building
2 minutes after the fire alarm goes off

In order to remove the burden of implementing this
detection on a per application basis, uniform mecha-
nisms for composite event detection can be provided.
Such mechanisms have been used widely in the area
of active databases, but they are not fully appropriate
for our problem. For example, the grammar and finite
state machine approach described in [6] does not al-
low concurrent monitoring. Once a monitor is checking
for one sequence, it remains busy until it has finished
that detection. Other approaches are more complex
to implement [4, 5] and are designed for a centralised
database. These do not directly address issues required
for a distributed implementation; current work in Cam-
bridge is establishing a composite event model for dis-
tributed active databases [9].

We have developed a technique which is simple to
implement, in which composite events can be specified
easily, which can cope with multiple concurrent detec-
tions and which is useful within a distributed environ-
ment. The approach is based on finite state machines
with acyclic transition graphs. We have enhanced them
to allow multiple tokens (‘beads’) to be active within
the machine at any one time. This technique enables
parallel detection of multiple occurrences of composite

events.
A standard A start Accepting Destructor
monitor state state State State
—> —> -
A standard arc A spawning arc A bead

Figure 3: Key to composite event symbols

ITo implement these examples would require people to wear
‘active badges’. They would also require badge and alarm services
which have registration and notification facilities as well as a
composite event service. We assume these continue to function
during a fire.

3.1 Building a Monitor

A monitoring machine is made up of states and arcs
(see figure 3). Arcs are labelled with events indicating
that the occurrence of such an event allows the arc to
be traversed. On initialisation, each machine has one
bead in the start state. Each state can be standard,
accepting or destroying. If a bead enters an accepting
state then the composite event is detected. If a bead
enters a destroying state then it is destroyed. A bead
will move to a new state when an event occurs which
matches the label on an arc leading from its current
state. Arcs can be standard or spawning. If the arc
is spawning, then the bead is copied. One instance
traverses the arc into a new state and one is left in the
current state.

Each arc is labelled by a standard event template
as described in section 2. The parameters can thus
be either variables or values. As a bead traverses the
states it records the values of all events which cause
it to move. We term this its path. The same variable
can be used in more than one event template. The first
occurrence instantiates the value, and this value is used
in the event template of any subsequent occurrences of
the variable. This is known as parameter matching.

We will illustrate monitoring machines using the ex-
amples introduced earlier.

FireAl arm LeaveBui | di ng(P)

Figure 4: People leaving the building after an alarm

Figure 4 shows the machine to monitor for peo-
ple who leave the building after a fire alarm goes off.
When the FireAlarm event occurs the single bead at
the initial state is advanced. The arc labelled with
the LeaveBuilding event is spawning, since we need
to create a new bead every time someone leaves the
building. The LeaveBuilding event has one param-
eter, the name of the person leaving. If we specified
in the event template a specific person, e.g. “Jean”,
then the link would only be traversed if Jean left the
building. In the example, since we specify a variable,
each person who leaves will be recorded. The arc leads
to an accepting state. Each bead reaching that state
contains a person’s name within its path.

Figure 5 shows the machine to monitor for all people
who have not left the building 2 minutes after the fire
alarm has gone off. In this case we have a spawning
arc to allow a bead for each person who enters. If a
person leaves the building then that bead is killed. If

www.manaraa.com

Ent er Bui | di ng(P)

LeaveBui | di ng(P)
LeaveBui | di ng(P) %

Figure 5: Those still in the building after an alarm

FireAl arm After(FirgAI arm 2 mns)

the fire alarm goes off then a timer is set with a time
service, which can itself generate events. If the time
elapses, then the time event causes any remaining beads
to enter an accepting state. The path of each of these
beads contains the name of someone who has not left
the building.
3.2 Composite Event Definitions

A machine to recognise a composite event can be
specified using a simple grammar. When a bead enters
an accepting state the machine signals a new event.
Composite events can themselves be components of
other composite events. A composite event can be de-
fined as a parametrised template, and can therefore fill
the role of a primitive event. Thus the monitor in figure
5 can be defined as

Define TrappedPerson(P:Person) =

Parameters can be inherited from sub-events, in this
case the value of P from the EnterBuilding event.
3.3 State Change as an Event

The approach embodied in active databases allows
not only synchronous method invocation but also the
registration of interest in state changes with notification
when these occur. As described in section 2.5, we have
adopted this approach in the design of a Name Service
Database. Lookup may be performed using an event
template, also clients may register an interest in order
to be informed of state changes.

Define InRoon(U userid, Rroonmd) =

OmsBadge(U, B) BadgeSeen(B,S) SensorlnRoon(S, R)

Figure 6: Lookup using event templates

This allows the functionality of parameter matching
in composite events to be extended. Certain services
may deal with different types of value, for example a

badge service may only understand badge ids and sen-
sor ids, and a login server can only understand user
ids. Often translation between these worlds is neces-
sary. An example is shown in figure 6. This shows the
InRoom composite. Two of the arc labels are Lookup
templates, only BadgeSeen is a standard event. A bead
is spawned for every user whose id matches the param-
eter provided for InRoom and who owns a badge in the
database. Each returns a badge id. A new bead is
spawned each time each badge is seen. Finally each
sensor id is looked up to obtain a room id which is
matched with the parameter provided.

3.4 Composite Event Notification

When a composite event is notified to a client, the
full path of the associated bead can be included. How-
ever, in the case of parametrised composite events, such
as the TrappedPerson example, only the required pa-
rameters are returned, in that case a Person.

In the same way as for primitive events, a client rou-
tine can be specified with each composite event reg-
istration. On notification, the event can be decoded
within this routine and the event parameters used in
service invocations.

Nbbi | eBi ff (P) =

LeaveO fice(P) Enter G fice(P)

Recei veMai | (P)

Handl er (env, e)
e. Decode(&P) ;
BeepBadge(P) ;

. Notification

Figure 7: Mobile Biff

3.5 Distribution Considerations

Distributed environments complicate the model of
composite events. Because of network delays and the
loadings of individual event servers, events can arrive at
a composite service in an order different from their oc-
currence. To illustrate the problem, consider a machine
with the structure shown in figure 7. If P is instanti-
ated to “John”, this machine accepts a composite event
if mail is received when user John is anywhere but his
office. This can be used to trigger the beeping of his
badge. This is not desirable when he is in his office
as it annoys his officemates. In some circumstances
the event indicating John has entered his office may
be delayed, and, although it occurred first, notification

www.manaraa.com

may be received after notification of the event indicat-
ing that mail has arrived. In a naive implementation
John’s badge will beep annoyingly.

A simple solution is to delay the execution of a com-
posite event until it is certain that all relevant events
have been received. In the example in figure 7, when
the ReceiveMail event occurs, the machine could wait
to ensure that all pertinent badge events had been re-
ceived before continuing.

Clock drift between distributed machines makes it
meaningless to try to order events that occur very close
together. For most applications the delay between
events that must be ordered correctly will be greater
than the clock drift. We are investigating techniques
for quantifying the probable ordering when this is not
the case.

3.6 Registration in Composite Events

For each bead, when it enters a state, interest is
registered in all events on arcs leading from that state,
and the events from the previous state are deregistered.
It is common for many beads to be waiting for the
same event, and for one event to be on several arcs,
so a registration cache is used to reduce the amount of
unnecessary registration and deregistration.

The cache keeps track of which event templates have
been registered, together with a list of beads interested
in each. For each event class, a template with a variable
parameter is more general than one specifying a value in
the same field. Only when a bead requests registration
of a completely new event need a registration to the
external server take place.

One problem with this approach is that of event
misses. When a machine has moved into a new state,
but before interest in the next event set is registered, an
event which would affect the machine can occur. This
problem may be handled by pre-registering interest in
the next event set before the relevant state is entered.
This may have to be done without knowing full details
of some fields, thus event templates may contain vari-
ables rather than matched parameters.

3.7 Specifying Composite Events

We are at present designing an algebraic language for
specifying composite events. The current method for
defining a monitoring machine involves listing all states
and state transitions. For example, one can specify the
machine shown in figure 7 in the following way:

S1: LeaveOffice(P)->>S52

S2: ReceiveMail (P)->S4, EnterOffice(P)->S3
S3: KILL

S4: ACCEPT

We are using this approach temporarily while we de-
velop a more transparent declarative language.

4 Event-based Applications
In this section we describe two styles of application
development using events. These applications use the
prototype services described in section 2.5 and the com-
posite event service described in section 3.
4.1 Applications Using Composite Events
Composite events allow powerful applications to be
built rapidly. We are at an early stage with our ex-
ploration of such applications but we have built several
prototypes. We have found it is easy to combine events
from different types of service into composite event sce-
narios.

PhoneTrack(N) =
ButtonPress(U, S)

PhoneNunber (S, N) Li neFree()

Handl er (env, e)
e. Decode(&N) ;
D al H

; Voi ceMai | () ;

Notification

Figure 8: Phone tracker application

One simple application is the phone tracker. The
composite event for this is shown in figure 8. If a user
presses their badge button then the phone number near-
est to the badge sensor where they clicked is looked up.
There is then a check to see whether the phone server
line is free. If all is well (the composite event has been
detected) that phone is dialled and any waiting mail is
spoken.

Another example of a composite event is our ver-
sion of the “Who” program. This detects who is in
the building using both active badge and login services
(those without badges might be found at an X display
known to be within the building). The machine keeps
track of the latest situation regarding who is in the
building.

When a new N .
user joins their Notify local drawing
board manager events to other
must register board managers Events from
with all active other user's
whiteboards whiteboards
strati Event '/
Registration ficati
Interface Server Notification
Modul Interface
odule Display
é them
¥ on local
—~— N\
Active
WhiteBoard
Object
N —
User Get a list of all boards

Interaction »—_ involved in a session

Figure 9: A shared drawing instance

www.manaraa.com

4.2 Cooperative Applications

Events can greatly simplify the development of ap-
plications which involve more than one user cooper-
ating in some task. We can illustrate this by a pro-
totype shared drawing application we have developed.
This application uses a number of event-driven drawing
boards (described in section 2.5), one for each user.

The model we have taken in this application is il-
lustrated in figure 9, which shows the equipment re-
quired by one user and how it communicates with oth-
ers. The model is replicated as opposed to centralised.
In other words each user has a full instance with all the
functionality of the application rather than all shared
traffic going through a central service. This approach
scales better and allows for failures, but a centralised
approach could be employed as easily.

The first action in starting an instance of a shared
board application is to create a whiteboard object to
interact with. The first person to start up a session
names it. Any other users may join this session by
communicating with a party who is already involved.
The new member is passed a list of the whiteboard
objects involved, with each of which they must register
an interest in events. Any drawing events notified from
other whiteboards are drawn on the local board by the
local instance of the board manager.

In this way the whiteboard objects are used in the
application without them having any knowledge of it.
This is another example of the reusability potential of
an event-based programming approach. Other cooper-
ative applications can be developed in a similar way,
e.g. we have also built a prototype video conferencing
system in which we use events for floor control.

5 Further Work and Conclusions

In recent years we have developed a multi service
storage architecture (MSSA) which supports objects
of different media types and is capable of extension
through value-adding service (VAS) layers [3]. It is our
work on VASs, for example an Interactive Multime-
dia Presentation support platform (IMP) [2], that has
led to the work presented here. We have found that
the handling of asynchronous events is fundamental
to many emerging applications and that a unified ap-
proach to programming with objects and events greatly
eases the task of application development.

We have extended an IDL to incorporate events. A
service may, through a standard event interface, specify
the event classes that it supports, allow clients to reg-
ister an interest in them and notify clients of their oc-
currence. A timestamp and parameters specific to the
event class identify each occurrence. Event handling
is no longer ad hoc and service specific, implemented
through callback routines.

We see a widespread need by applications to recog-
nise composite events involving primitive events of dif-
ferent classes. We have implemented a composite event
recogniser as a generally available service. During de-
tection of composite events parameter values associated
with the component primitive events can be matched,
and this facility is enhanced by simple database lookup.

Although at an early stage, these ideas have been
tested through prototype implementation and evalua-
tion. We have built a number of services incorporating
the event interface and have found application devel-
opment considerably eased by this standard treatment.
We have also built and used a composite event detec-
tion service based on non-deterministic finite state ma-
chines. At present the service interface for compos-
ite events is primitive, being defined by specifying an
acyclic finite state recogniser. We are working on a
high-level event algebra that will enable us to specify a
wider class of composite events.

In summary, we believe that the approach is intu-
itive and makes it considerably easier to develop ap-
plications. The prototype has been implemented by a
simple extension to widely used software technology.
Acknowledgements

We are grateful to the EPSRC for supporting this work, under
grant GR/J42007.

References

[1] Architecture Projects Management Limited Advanced Net-
worked Systems Architecture Testbench Implementation
Manual, 1993.

[2] J. Bates and J. Bacon. Supporting interactive presentation
for distributed multimedia applications. Multimedia Tools
and Applications, 1(1), 1995.

[3] J. Bacon, R. Hayton, S. L. Lo, and K. Moody. Access control
for a modular, extensible storage service. In Proceedings of
the First International Workshop on Services in Distributed
and Networked Environments, 1994.

[4] S. Chakravarthy and D. Mishra. Snoop: An expressive event
specification language for active databases. Technical Report
UF-CIS-TR-93-007, University of Florida, 1993.

[5] S. Gatziu and K.R. Dittrich. Detecting composite events in
active database systems using Petri nets. In Proceedings of
the 4th International Conference on Research Issues in Data
Engineering: Active Database Systems, Houston, Texas,
February 1994.

[6] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Composite
event specification in active databases: Model & implemen-
tation. In Proceedings of the 18th VLDB Conference, Van-
couver, British Columbia, Canada, 1992.

[7] Object Management Group. The Common Object Request
Broker: Architecture and specification. Technical Report
91.9.1, Object Management Group, December 1991.

[8] T. Roscoe, S. Crosby, and R. Hayton. MSRPC II User Man-
ual. University of Cambridge Computer Laboratory, 1994.

[9] S. Schwiderski. Supporting Composite Events for Distributed
Active Databases. PhD thesis, Computer Laboratory, Univer-
sity of Cambridge, 1995. In preparation.

www.manaraa.com

