
www.manaraa.com

Using Events to Build Distributed ApplicationsJean Bacon, John Bates, Richard Hayton and Ken MoodyUniversity of Cambridge Computer LaboratoryPembroke Street, Cambridge CB2 3QG, United KingdomAbstractWe have extended an Interface De�nition Lan-guage to handle event registration and noti�cation.Clients register interest in speci�ed classes of eventsand servers then notify them of any occurrence asyn-chronously. Event occurrences are identi�ed by pa-rameters which conform to IDL typing constraints andcan therefore be used in synchronous method invoca-tions. Methods to handle registration and noti�cationare generic and can be inherited by objects of any class:as a by-product of IDL processing the stubs to han-dle event creation and decoding are generated automat-ically. We have implemented a prototype compositeevent recogniser based on non-deterministic �nite statemachines. Initial experience with this prototype is en-couraging.1 IntroductionThe term \event" is used in many spheres of com-puting to capture the notion of an autonomous asyn-chronous occurrence. Here, we are concerned withevents within an object-orientated distributed pro-gramming (OODP) environment and have designed auni�ed framework for programming with objects andevents.Current OODP technology is based on objects withtyped interfaces together with support for providersto make them available, and for users to locate andinvoke them [7, 1]. This object-orientated paradigmis well established but does not capture fully the dy-namic, event-driven behaviour of many systems. Some\active" objects monitor continuously for speci�c oc-currences and may then notify interested clients asyn-chronously. We believe that applications will, increas-ingly, need to request and receive noti�cation of asyn-chronous occurrences (events) as well as carrying outsynchronous service invocation.1.1 Current Event Handling ApproachesHandling an asynchronous interrupt in order toavoid polling is familiar from the hardware-system in-terface. Exception handling at the programming lan-guage level comprises client-supplied routines being in-voked in response to server-detected events.

In an OODP framework the usual approach to han-dling asynchronous messages from an active service isthe \callback" mechanism. The client must provide acallback interface for each service which can then beinvoked by the server. This approach is ad hoc: theclient has to declare itself as a service because there isno mechanism for declaring and handling events.Because di�erent systems use di�erent callbackmechanisms a lot of potential for reuse of services islost. Also, applications are complicated by includ-ing di�erent libraries for di�erent services. A uni-form mechanism for specifying interest in events andbeing noti�ed of their occurrence provides a powerfulparadigm for building \active applications".1.2 Emerging Classes of ServiceThe list below introduces some types of service whichare emerging in distributed environments along withthe applications which access them:�Multimedia Services: Applications such as Hyper-media can require access to components from di�erentservices, e.g. those supporting video, audio, text or pic-tures. User interaction with one distributed mediumcomponent can cause an application to initiate actionson another. For example, clicking on a marked area ofa video presentation may cause it to be halted and anaudio commentary output.�Cooperative Systems: Cooperative applicationssupport collaboration between a number of users. Oc-currences in one application instance must be re
ectedin others.�Services involving Mobility: e.g. services whichutilise the `Active Badge' system. Each user is pro-vided with a mobile badge device which periodicallytransmits a unique infra-red signal. Distributed detec-tors report people's locations to monitoring services.Applications must be able to request and receive infor-mation such as when people's locations change.�Agent Architectures: Agents are services which ap-ply \intelligence heuristics" to reporting on their mon-itoring activities. An example is reporting that mailhas arrived only if it is from someone interesting. Weenvisage agents which apply heuristics to noti�cationsfrom a range of services.

www.manaraa.com

�Active Database Systems: i.e. a standard DBMSaugmented with facilities to monitor for certain se-quences of database activity. Uses of such monitor-ing include security checks and constraint enforcement.Standard object invocations by some clients triggerevents of interest to others.All of these service types are `active' and `continu-ous'. They not only carry out user requests but alsomonitor concurrently for certain events. Several existfor the speci�c purpose of monitoring. Applicationswhich use these systems must be informed of event oc-currences which they can use to initiate further actions.The activities of di�erent classes of service can oftenbe combined. For example, a video conference mightbe started at the workstation nearest to a person's cur-rent location only if software agents decide that theperson is not too busy to deal with it. An architectureis required in which basic services carry out standardevent-related functions allowing additional functional-ity, such as event composition, to be provided by higherlevel services.1.3 Our Event ApproachThe use of objects has become an accepted basisfor distributed programming. Strongly typed interfacesenhance ease of programming, correctness, reusabilityand portability. However, new applications are expos-ing the need to extend the paradigm to accommodatedynamic, asynchronous behaviour. Our integration ofevents into the object framework addresses this short-coming.We believe that many applications are developed`from scratch' because appropriate monitoring facilitiesare not provided by existing services. To redress thiswe propose a standard extension to services to incorpo-rate event speci�cation (by services), registration(by clients at services) and noti�cation (by servicesto clients).Some applications will require noti�cation of eventsfrom multiple services and will need to detect speci�cpatterns of composite event occurrence from these dif-ferent sources. If services are built to conform to ourproposed standards, their clients can compose eventsinto expressions. Since composite event detection isneeded in many applications we have built a compos-ite event service to meet this requirement.1.4 Structure of this PaperIn section 2 we describe our model for typed events,registration and noti�cation. Examples of events whichservices might notify are speci�ed using an InterfaceDe�nition Language (IDL) extended for events. Weshow how a client registers an interest in certain eventsat a server, and we describe facilities to help clients andservices to manage event occurrences. We also describe

prototype services we have built using our extendedIDL.In section 3 we illustrate `composite events': a mech-anism for specifying composite monitoring scenarios us-ing primitive events as building blocks. We discuss aprototype composite event service we have developed.In section 4 we describe prototype applications wehave built to explore our ideas. Experimental work isstill in progress and in section 5 we discuss our early�ndings.2 Event ServicesThe event approach aims to augment rather thanreplace current distributed programming methods. Wehave therefore extended an existing Interface De�nitionLanguage (IDL) to handle events. This enables a serverto declare, in a strongly-typed way, the events it cannotify. It also allows a client to see the server's speci�-cation of events and to select those of interest. In thissection, event examples will be given in the extendedIDL. We have also developed plug-in server and clientmodules to provide generic event operations, such asregistration and noti�cation. In this section, we �rstdescribe our event model and then discuss aspects ofour prototype implementation.2.1 Event Classi�cationIn our model an event instance is an object. Todeclare an event requires a class and the sequence oftyped parameters that instantiates a particular eventobject. An example of an event declaration isBadge : INTERFACE =Seen: EVENTCLASS [badge : BadgeId;sensor : SensorId];END.This is taken from the interface Badge, declared aspart of an active badge service. The service monitorsthe locations of badge wearers by receiving the latestinformation from badge sensors. Since an event is de-clared in an interface description, each of the param-eters of the event can be of any type which can beconstructed in the IDL. This enables events to sharetypes with interface methods, which is essential whenusing event parameters in further calls to the service.Event instances are objects. Event clients and ser-vices exchange these event objects. Each event class hasits own creation routine, for which parameters must beprovided. For example, the badge service can createa Seen event object to send to interested clients. Anevent representing badge 13 being detected by sensor23 can be created in the following way:e = Badge_Seen(13,23);

www.manaraa.com

All event classes are derived from the super-class Event.As illustrated below, this allows generic operations tobe provided in client and service modules.
Badge
Client

Registration
Event Client Module

Event Server Module
List of Registered
Events

 Register
DeRegister

Notification

 Event
Comparison

Signal

 Event
Templates

 Event
Instances

Invocation of Client-Specified Methods

 Badge
Service

Figure 1: Registration and Noti�cation2.2 Registration and Noti�cationThis section describes event interactions betweenevent clients and services, illustrated in �gure 1.A service has the ability to signal detected occur-rences as event instances. Clients will only be told ofthe occurrence of events (noti�ed) if they have regis-tered an interest in these events (see below). Takingthe badge service as an example, it is constantly receiv-ing information on the location of individuals, which itcan signal as events. It can create an appropriate eventobject (as in e above) and signal it in the following way:EventServer.Signal(e);The Signalmethod is a generic operation which is pro-vided by the event service module (see below).In order to be noti�ed of the occurrence of events, aclient must register interest with the relevant service.An event template is given to specify the parametersdenoting the events of interest. A template is an eventobject which can be instantiated with parameters of avalid type, and variables. If speci�c parameter valuesare given, then an occurrence will be noti�ed only ifit matches in these parameters. A variable, given inplace of some parameter, indicates a `wild card' whichcan match any value in signalled events. Examples ofevent template object instantiations arewhen = Seen(13,47){ notify whenever badge 13 is seen at sensor 47.who = Seen(P,23){ notify every time a badge is seen at sensor 23.When a client has created an event template, it mustregister it with the relevant service. To do this, it mustuse the generic event client method Register. The

following example shows the registration of interest inany badge event about anyone seen in any room:template = Badge_Seen(P,R);EventClient.Register(env,EventHandler,template);The EventHandler �eld in the Register method indi-cates a client method which is to be invoked when anevent matching the template (parameter template) isnoti�ed. The env parameter is returned as a parameterto this method, along with the event instance which hasbeen signalled. A header for an event handling method,which must be speci�ed by the client, is expressed inthe following way:void EventHandler(Opaque *env, Event *event)The env �eld is used for client-speci�c purposes. Itstypical use is as a pointer to a client-de�ned structurethat provides extra information when an event is noti-�ed. The event object parameter can be queried, viaits methods, to decode its instance speci�c parameters.This can be done in the following way:event.Decode() -> {Instance-Parameters}Since event parameters are de�ned using the same IDLas service methods, the extracted parameters can beused directly when invoking further interface methods.If a client no longer requires noti�cation of a par-ticular event template, then it is possible to deregisterinterest.
Badge = INTERFACE
Seen : EVENTCLASS [badge:BadgeId;
 ssensor:SensorId];
END.

 Stub
Generator

Badge_Seen(badge:BadgeId,
 sensor:SensorId) ->
 (e:Event)
{....}

Badge_Seen_Decode(e:Event)->
 (badge:BadgeId,
 sensor:SensorId)
{....}Figure 2: Examples of automatic stub generation2.3 Event TimestampsEvent objects also have a timestamp attribute. Theevent service module sets this attribute when eventsare signalled. Despite the problems of distributed time,this can be useful in various application-speci�c circum-stances. We discuss it with reference to event compo-sition in section 3.2.4 Implementation ConcernsIn order to support this model of registration andnoti�cation in distributed programs we have had to ex-tend current OODP models in the following two ways.

www.manaraa.com

2.4.1 Automatic Stub GenerationThe �rst is the IDL extension to support events. TheIDL we selected is that of MSRPC II [8], a locally devel-oped high-performance RPC system. MSRPC II's IDLis an extended version of the ANSA model [1]. Thebene�t of extending an IDL for events is not just theuniform programming environment, but also the po-tential for automatic generation of code. In the sameway that client and server stubs are generated for themarshalling and unmarshalling of method invocations,the event interface can be used as a speci�cation fora stub generator that automatically creates the event-speci�c stubs required by event objects. These stubs in-clude the code required to create event object instancesand templates and event-speci�c methods, such as theDecode method to access the event instance parame-ters.As an example, from the Badge interface speci�edabove, the stubs to create and decode event and tem-plate instances can be generated (see �gure 2).2.4.2 Client and Server Event ModulesThe second extension is the client and server `plug-in modules' to provide an interface to support genericevent operations (such as registration and signalling).Because all event classes are derived from the superclassEvent, client and server modules can deal with eventsgenerically. The stub routines are responsible for in-stantiating event objects and for accessing their inter-nal state, simplifying the job of the client and servermodules.The server event module manages the functions ofregistration and noti�cation transparently to the ser-vice. It provides registration interfaces for events.Event templates are stored by the module, and when-ever an event is signalled by the server code it checksthe event against all templates. Any that match arenoti�ed to the appropriate client.The client module provides facilities for handling no-ti�cations from a server. It provides a noti�cation inter-face, a reference to which is speci�ed when registeringevents with the service. This enables the service to callthe client when its templates are matched.To facilitate the access to registration interfaces re-quires a binding agent, such as the trader in the ANSA(and MSRPC II) model. In our implementation anevent service's registration interfaces are optionally ex-ported to the trader by the event service module. Whena registration call is made to the client module it at-tempts to import an interface of the appropriate typefrom the trader.

2.5 Prototype Objects and ServicesWe have developed a number of event services toprovide an application development testbed.�The badge service keeps track of the locations ofindividuals wearing active badges. It is possible to reg-ister interest in individuals and sensors.�The phone service manages a phone device.This is connected to an audio service to allowdigitised speech to be sent down the phone line.Event classes which can be registered with thisservice include fLineFree, LineBusy, PhoneRing,StoppedRinging, KeyPressg. The KeyPress eventtype is used to detect whether someone on the otherend of the phone has pressed one of the phone keys.�The login service monitors for logging into and outof machines. It can also be used to locate people whodo not have active badges by seeing whether they areusing X displays located within the building. Exampleevent classes from this service are fLogin, Logout,ActiveDisplay, InActiveDisplayg.�The database name service illustrates how event fa-cilities can assist the construction of an active database.This service complements the active badge service byproviding mappings such as that from a badge id toa user's name and from a sensor id to a room name.It also stores the locations of items, e.g. which roomholds a particular display. Our service allows Lookupto be performed using an event template. It also al-lows clients to register interest in database items andthen to be noti�ed on update. For example, we mighthave looked up Ken's badge id in order to present itto a badge service to monitor his location. If sometimelater Ken gets a new badge then the database can tellus that an update has occurred so that we can amendour monitoring.�Interconnectable multimedia objects have been de-veloped, each of which has registration and noti�cationcapabilities [2]. These include text, picture, video andaudio objects for device access and �ltering. We willdiscuss how these objects can be used in more complexsystems such as cooperative applications in section 4.Another type of object which is described further be-low is the Whiteboard object. This provides a user witha graphical drawing board. Any interaction using themouse pointer as a pen results in a line being drawn.Each line drawn also generates an event and it is pos-sible to register interest in these events. Such simplecomponents provide building blocks for more complexapplications.�The time service will register a request for an eventto be noti�ed to a client at a speci�ed time. This serviceis used in composite events (see section 3) to enabletime o�sets to be included in monitoring scenarios.

www.manaraa.com

3 Composite EventsOften, activity within applications is triggered notjust by a single event but by a complex pattern ofevents. Such composite detection can involve param-eter checking of event occurrences, state lookup andmonitoring for particular event orderings.Some examples of composite event scenarios are1:� Monitoring for everyone who leaves the buildingafter a �re alarm goes o�� Monitoring for everyone who is still in the building2 minutes after the �re alarm goes o�In order to remove the burden of implementing thisdetection on a per application basis, uniform mecha-nisms for composite event detection can be provided.Such mechanisms have been used widely in the areaof active databases, but they are not fully appropriatefor our problem. For example, the grammar and �nitestate machine approach described in [6] does not al-low concurrent monitoring. Once a monitor is checkingfor one sequence, it remains busy until it has �nishedthat detection. Other approaches are more complexto implement [4, 5] and are designed for a centraliseddatabase. These do not directly address issues requiredfor a distributed implementation; current work in Cam-bridge is establishing a composite event model for dis-tributed active databases [9].We have developed a technique which is simple toimplement, in which composite events can be speci�edeasily, which can cope with multiple concurrent detec-tions and which is useful within a distributed environ-ment. The approach is based on �nite state machineswith acyclic transition graphs. We have enhanced themto allow multiple tokens (`beads') to be active withinthe machine at any one time. This technique enablesparallel detection of multiple occurrences of compositeevents.
A standard
monitor state

Destructor
State

Accepting
State

A spawning arcA standard arc A bead

A start
stateFigure 3: Key to composite event symbols1To implement these examples would require people to wear`active badges'. They would also require badge and alarm serviceswhich have registration and noti�cation facilities as well as acomposite event service. We assume these continue to functionduring a �re.

3.1 Building a MonitorA monitoring machine is made up of states and arcs(see �gure 3). Arcs are labelled with events indicatingthat the occurrence of such an event allows the arc tobe traversed. On initialisation, each machine has onebead in the start state. Each state can be standard,accepting or destroying. If a bead enters an acceptingstate then the composite event is detected. If a beadenters a destroying state then it is destroyed. A beadwill move to a new state when an event occurs whichmatches the label on an arc leading from its currentstate. Arcs can be standard or spawning. If the arcis spawning, then the bead is copied. One instancetraverses the arc into a new state and one is left in thecurrent state.Each arc is labelled by a standard event templateas described in section 2. The parameters can thusbe either variables or values. As a bead traverses thestates it records the values of all events which causeit to move. We term this its path. The same variablecan be used in more than one event template. The �rstoccurrence instantiates the value, and this value is usedin the event template of any subsequent occurrences ofthe variable. This is known as parameter matching.We will illustrate monitoring machines using the ex-amples introduced earlier.
LeaveBuilding(P)FireAlarm

Figure 4: People leaving the building after an alarmFigure 4 shows the machine to monitor for peo-ple who leave the building after a �re alarm goes o�.When the FireAlarm event occurs the single bead atthe initial state is advanced. The arc labelled withthe LeaveBuilding event is spawning, since we needto create a new bead every time someone leaves thebuilding. The LeaveBuilding event has one param-eter, the name of the person leaving. If we speci�edin the event template a speci�c person, e.g. \Jean",then the link would only be traversed if Jean left thebuilding. In the example, since we specify a variable,each person who leaves will be recorded. The arc leadsto an accepting state. Each bead reaching that statecontains a person's name within its path.Figure 5 shows the machine to monitor for all peoplewho have not left the building 2 minutes after the �realarm has gone o�. In this case we have a spawningarc to allow a bead for each person who enters. If aperson leaves the building then that bead is killed. If

www.manaraa.com

LeaveBuilding(P)

FireAlarmEnterBuilding(P)

LeaveBuilding(P)

After(FireAlarm,2 mins)

SetTimer

Figure 5: Those still in the building after an alarmthe �re alarm goes o� then a timer is set with a timeservice, which can itself generate events. If the timeelapses, then the time event causes any remaining beadsto enter an accepting state. The path of each of thesebeads contains the name of someone who has not leftthe building.3.2 Composite Event De�nitionsA machine to recognise a composite event can bespeci�ed using a simple grammar. When a bead entersan accepting state the machine signals a new event.Composite events can themselves be components ofother composite events. A composite event can be de-�ned as a parametrised template, and can therefore �llthe role of a primitive event. Thus the monitor in �gure5 can be de�ned asDefine TrappedPerson(P:Person) =Parameters can be inherited from sub-events, in thiscase the value of P from the EnterBuilding event.3.3 State Change as an EventThe approach embodied in active databases allowsnot only synchronous method invocation but also theregistration of interest in state changes with noti�cationwhen these occur. As described in section 2.5, we haveadopted this approach in the design of a Name ServiceDatabase. Lookup may be performed using an eventtemplate, also clients may register an interest in orderto be informed of state changes.
Define InRoom(U:userid, R:roomid) =

OwnsBadge(U,B) BadgeSeen(B,S) SensorInRoom(S,R)

Figure 6: Lookup using event templatesThis allows the functionality of parameter matchingin composite events to be extended. Certain servicesmay deal with di�erent types of value, for example a

badge service may only understand badge ids and sen-sor ids, and a login server can only understand userids. Often translation between these worlds is neces-sary. An example is shown in �gure 6. This shows theInRoom composite. Two of the arc labels are Lookuptemplates, only BadgeSeen is a standard event. A beadis spawned for every user whose id matches the param-eter provided for InRoom and who owns a badge in thedatabase. Each returns a badge id. A new bead isspawned each time each badge is seen. Finally eachsensor id is looked up to obtain a room id which ismatched with the parameter provided.3.4 Composite Event Noti�cationWhen a composite event is noti�ed to a client, thefull path of the associated bead can be included. How-ever, in the case of parametrised composite events, suchas the TrappedPerson example, only the required pa-rameters are returned, in that case a Person.In the same way as for primitive events, a client rou-tine can be speci�ed with each composite event reg-istration. On noti�cation, the event can be decodedwithin this routine and the event parameters used inservice invocations.
ReceiveMail(P)

LeaveOffice(P)
EnterOffice(P)

MobileBiff(P) =

Handler(env,e)
{
 e.Decode(&P);
 BeepBadge(P);
}

NotificationFigure 7: Mobile Bi�3.5 Distribution ConsiderationsDistributed environments complicate the model ofcomposite events. Because of network delays and theloadings of individual event servers, events can arrive ata composite service in an order di�erent from their oc-currence. To illustrate the problem, consider a machinewith the structure shown in �gure 7. If P is instanti-ated to \John", this machine accepts a composite eventif mail is received when user John is anywhere but hiso�ce. This can be used to trigger the beeping of hisbadge. This is not desirable when he is in his o�ceas it annoys his o�cemates. In some circumstancesthe event indicating John has entered his o�ce maybe delayed, and, although it occurred �rst, noti�cation

www.manaraa.com

may be received after noti�cation of the event indicat-ing that mail has arrived. In a naive implementationJohn's badge will beep annoyingly.A simple solution is to delay the execution of a com-posite event until it is certain that all relevant eventshave been received. In the example in �gure 7, whenthe ReceiveMail event occurs, the machine could waitto ensure that all pertinent badge events had been re-ceived before continuing.Clock drift between distributed machines makes itmeaningless to try to order events that occur very closetogether. For most applications the delay betweenevents that must be ordered correctly will be greaterthan the clock drift. We are investigating techniquesfor quantifying the probable ordering when this is notthe case.3.6 Registration in Composite EventsFor each bead, when it enters a state, interest isregistered in all events on arcs leading from that state,and the events from the previous state are deregistered.It is common for many beads to be waiting for thesame event, and for one event to be on several arcs,so a registration cache is used to reduce the amount ofunnecessary registration and deregistration.The cache keeps track of which event templates havebeen registered, together with a list of beads interestedin each. For each event class, a template with a variableparameter is more general than one specifying a value inthe same �eld. Only when a bead requests registrationof a completely new event need a registration to theexternal server take place.One problem with this approach is that of eventmisses. When a machine has moved into a new state,but before interest in the next event set is registered, anevent which would a�ect the machine can occur. Thisproblem may be handled by pre-registering interest inthe next event set before the relevant state is entered.This may have to be done without knowing full detailsof some �elds, thus event templates may contain vari-ables rather than matched parameters.3.7 Specifying Composite EventsWe are at present designing an algebraic language forspecifying composite events. The current method forde�ning a monitoring machine involves listing all statesand state transitions. For example, one can specify themachine shown in �gure 7 in the following way:S1: LeaveOffice(P)->>S2S2: ReceiveMail(P)->S4, EnterOffice(P)->S3S3: KILLS4: ACCEPTWe are using this approach temporarily while we de-velop a more transparent declarative language.

4 Event-based ApplicationsIn this section we describe two styles of applicationdevelopment using events. These applications use theprototype services described in section 2.5 and the com-posite event service described in section 3.4.1 Applications Using Composite EventsComposite events allow powerful applications to bebuilt rapidly. We are at an early stage with our ex-ploration of such applications but we have built severalprototypes. We have found it is easy to combine eventsfrom di�erent types of service into composite event sce-narios.
PhoneNumber(S,N)ButtonPress(U,S) LineFree()

Handler(env,e)
{
 e.Decode(&N);
 Dial(N);
 VoiceMail();
}

PhoneTrack(N) =

NotificationFigure 8: Phone tracker applicationOne simple application is the phone tracker. Thecomposite event for this is shown in �gure 8. If a userpresses their badge button then the phone number near-est to the badge sensor where they clicked is looked up.There is then a check to see whether the phone serverline is free. If all is well (the composite event has beendetected) that phone is dialled and any waiting mail isspoken.Another example of a composite event is our ver-sion of the \Who" program. This detects who is inthe building using both active badge and login services(those without badges might be found at an X displayknown to be within the building). The machine keepstrack of the latest situation regarding who is in thebuilding.
 Event
Server
Module

User
Interaction

When a new
user joins their
board manager
must register
with all active
whiteboards

Registration
Interface

 Active
WhiteBoard
 Object

 Board
Manager

 Event
 Client
Module

Events from
other user’s
whiteboards

Get a list of all boards
involved in a session

 Join
Interface

Notification
Interface

Display
them
on local
board

Notify local drawing
events to other
board managers

Figure 9: A shared drawing instance

www.manaraa.com

4.2 Cooperative ApplicationsEvents can greatly simplify the development of ap-plications which involve more than one user cooper-ating in some task. We can illustrate this by a pro-totype shared drawing application we have developed.This application uses a number of event-driven drawingboards (described in section 2.5), one for each user.The model we have taken in this application is il-lustrated in �gure 9, which shows the equipment re-quired by one user and how it communicates with oth-ers. The model is replicated as opposed to centralised.In other words each user has a full instance with all thefunctionality of the application rather than all sharedtra�c going through a central service. This approachscales better and allows for failures, but a centralisedapproach could be employed as easily.The �rst action in starting an instance of a sharedboard application is to create a whiteboard object tointeract with. The �rst person to start up a sessionnames it. Any other users may join this session bycommunicating with a party who is already involved.The new member is passed a list of the whiteboardobjects involved, with each of which they must registeran interest in events. Any drawing events noti�ed fromother whiteboards are drawn on the local board by thelocal instance of the board manager.In this way the whiteboard objects are used in theapplication without them having any knowledge of it.This is another example of the reusability potential ofan event-based programming approach. Other cooper-ative applications can be developed in a similar way,e.g. we have also built a prototype video conferencingsystem in which we use events for
oor control.5 Further Work and ConclusionsIn recent years we have developed a multi servicestorage architecture (MSSA) which supports objectsof di�erent media types and is capable of extensionthrough value-adding service (VAS) layers [3]. It is ourwork on VASs, for example an Interactive Multime-dia Presentation support platform (IMP) [2], that hasled to the work presented here. We have found thatthe handling of asynchronous events is fundamentalto many emerging applications and that a uni�ed ap-proach to programming with objects and events greatlyeases the task of application development.We have extended an IDL to incorporate events. Aservice may, through a standard event interface, specifythe event classes that it supports, allow clients to reg-ister an interest in them and notify clients of their oc-currence. A timestamp and parameters speci�c to theevent class identify each occurrence. Event handlingis no longer ad hoc and service speci�c, implementedthrough callback routines.

We see a widespread need by applications to recog-nise composite events involving primitive events of dif-ferent classes. We have implemented a composite eventrecogniser as a generally available service. During de-tection of composite events parameter values associatedwith the component primitive events can be matched,and this facility is enhanced by simple database lookup.Although at an early stage, these ideas have beentested through prototype implementation and evalua-tion. We have built a number of services incorporatingthe event interface and have found application devel-opment considerably eased by this standard treatment.We have also built and used a composite event detec-tion service based on non-deterministic �nite state ma-chines. At present the service interface for compos-ite events is primitive, being de�ned by specifying anacyclic �nite state recogniser. We are working on ahigh-level event algebra that will enable us to specify awider class of composite events.In summary, we believe that the approach is intu-itive and makes it considerably easier to develop ap-plications. The prototype has been implemented by asimple extension to widely used software technology.AcknowledgementsWe are grateful to the EPSRC for supporting this work, undergrant GR/J42007.References[1] Architecture Projects Management Limited Advanced Net-worked Systems Architecture Testbench ImplementationManual, 1993.[2] J. Bates and J. Bacon. Supporting interactive presentationfor distributed multimedia applications. Multimedia Toolsand Applications, 1(1), 1995.[3] J. Bacon, R. Hayton, S. L. Lo, and K. Moody. Access controlfor a modular, extensible storage service. In Proceedings ofthe First International Workshop on Services in Distributedand Networked Environments, 1994.[4] S. Chakravarthy and D. Mishra. Snoop: An expressive eventspeci�cation language for active databases. Technical ReportUF-CIS-TR-93-007, University of Florida, 1993.[5] S. Gatziu and K.R. Dittrich. Detecting composite events inactive database systems using Petri nets. In Proceedings ofthe 4th International Conference on Research Issues in DataEngineering: Active Database Systems, Houston, Texas,February 1994.[6] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Compositeevent speci�cation in active databases: Model & implemen-tation. In Proceedings of the 18th VLDB Conference, Van-couver, British Columbia, Canada, 1992.[7] Object Management Group. The Common Object RequestBroker: Architecture and speci�cation. Technical Report91.9.1, Object Management Group, December 1991.[8] T. Roscoe, S. Crosby, and R. Hayton. MSRPC II User Man-ual. University of Cambridge Computer Laboratory, 1994.[9] S. Schwiderski. Supporting Composite Events for DistributedActive Databases. PhD thesis, Computer Laboratory, Univer-sity of Cambridge, 1995. In preparation.

